Sharks have evolved some incredible fluid dynamical abilities. Instead of scales, their skin is covered in microscopic structures called denticles. To give you a sense of size, each denticle in the black and white image above is about 100 microns across. Denticles are asymmetric and overlap one another, creating a preferential flow direction along the shark. When water tries to move opposite the preferred direction, the denticles will bristle, like in the animation above. The bristled denticles form an obstacle for the reversed flow without any effort on the shark’s part. Since local flow reversal is an early sign of separation, researchers theorize that this bristling tendency prevents flow along the shark’s skin from separating. Keeping flow attached, especially along the shark’s tail, is vital not only to the shark’s agility but to keeping its drag low. Researchers have even begun 3D printing artificial shark skin to try and harness the animal’s hydrodynamic prowess. For much more shark-themed science, be sure to check out this week’s "Several Consecutive Calendar Days Dedicated to Predatory Cartilaginous Fishes" video series by SciShow, It’s Okay to be Smart, The Brain Scoop, Smarter Every Day, and Minute Physics. (Image credits: J. Oeffner and G. Lauder; A. Lang et al.; original video; jidanchaomian)


The New World Geebird & Bamby

The New World" revisits anonymous places of the 20th century. It is set in a time characterized by the conflict of Modernist and Postmodernist convictions, its influence on later 20th century history, and ultimately, the world we live in today. 

On a formal level, this conflict defines the aesthetics of the collection. The interrelation of rational graphic design and anonymous photorealism reflects the contrast of manmade ideals and the acceptance of life in chaos. “The New World" is shaped by an original set of rules, metrics and processes. This enables the revelation of eclectic utopias that, for better or worse, withhold the definition of a photograph."


Hydrophobic surfaces are great for creating some wild behaviors with water droplets, but they make neat effects with other liquids, too. The viscous honey in the first segment of this Chemical Bouillon video is a great example. Because the honey doesn’t adhere to the hydrophobic surface, the viscoelastic fluid does not maintain the form it had when drizzled on the surface. Instead, the honey contracts, with surface tension driving Plateau-Rayleigh-like instabilities that break the contracting ligaments apart to form nearly spherical droplets of honey on the surface.  (Video credit: Chemical Bouillon